Characterization of neuronal migration disorders in neocortical structures: extracellular in vitro recordings.

نویسندگان

  • H J Luhmann
  • K Raabe
  • M Qü
  • K Zilles
چکیده

The majority of patients showing neuronal migration disorders in cortical structures suffer from pharmaco-resistant epilepsy. In order to study the molecular and cellular mechanisms underlying this pronounced hyperexcitability, we used an animal model of focal cortical dysplasia demonstrating structural malformations which resemble the human pathology of microgyria. Neocortical slices prepared from adult rats, which at the day of birth received a cortical freeze lesion, were analysed in vitro with an array of eight extracellular recording electrodes to investigate the pattern and pharmacology of propagating epileptiform activity in microgyric cortex. In cortical slices exhibiting neuronal migration disorders, orthodromic synaptic stimulation elicited late recurrent activity and early epileptiform responses that spread with 0.06 m/s over > or = 3.5 mm across the cortex. Application of a N-methyl-D-aspartate (NMDA) antagonist blocked the late recurrent activity, but not the propagation of the early epileptiform responses. The latter were blocked by an (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) antagonist, indicating that the spread of this activity was predominantly mediated by activation of AMPA receptors. A very similar response pattern could be observed in neocortical slices obtained from untreated age-matched control rats, when the slice was partially disinhibited by bath-application of 5 microM bicuculline methiodide. Stimulus-evoked epileptiform signals recorded in disinhibited slices propagated with 0.08 m/s across the cortex and showed the same sensitivity to ionotropic glutamate antagonists as in dysplastic cortex. Our results indicate that widespread structural and/or functional modifications of the AMPA receptor and possibly also of the gamma-amino-butyric acid type A receptor contribute to the pronounced hyperexcitability in dysplastic cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O7: Functional Characterization of Human GABAA Autoantibodies in the Context of Limbic Encephalitis

Limbic encephalitis is an adaptive autoimmune disease, induced by different autoantibodies, which target extracellular neuronal epitopes, such as NMDA or GABAB receptors1,2. Recently our group found another human antibody, which binds to the α1 subunit of the GABAA receptor. Since the GABAA receptor is responsible for the majority of fast inhibitory neurotransmission, we investigated chan...

متن کامل

Characterization of neuronal migration disorders in neocortical structures. II. Intracellular in vitro recordings.

Neuronal migration disorders (NMD) are involved in a variety of different developmental disturbances and in therapy-resistant epilepsy. The cellular mechanisms underlying the pronounced hyperexcitability in dysplastic cortex are not well understood and demand further clinical and experimental analyses. We used a focal freeze-lesion model in cerebral cortex of newborn rats to study the functiona...

متن کامل

GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo.

The cortical migration process depends on a number of trophic factors and on the activation of different voltage- and ligand-gated channels. We investigated the role of gamma-aminobutyric acid (GABA) type A receptors in the neuronal migration process of the newborn rat parietal cortex in vivo and in vitro. Local in vivo application of the GABA-A antagonist bicuculline methiodide (BMI) or the ag...

متن کامل

Exosomes: Future Perspective in Neurodegenerative Diseases

Neurodegeneration is a progressive and irreversible loss of neuronal cells in specific regions of the brain. Alzheimer Diseases (AD) Parkinson Disease (PD) are the most common forms of neurodegenerative diseases in older people. Exosomes are extracellular nanovesicles that have a key role in physiological processes such as intercellular communication, cell migration, angiogenesis, and anti-tumo...

متن کامل

Reelin Regulates Cadherin Function via Dab1/Rap1 to Control Neuronal Migration and Lamination in the Neocortex

Neuronal migration is critical for establishing neocortical cell layers and migration defects can cause neurological and psychiatric diseases. Recent studies show that radially migrating neocortical neurons use glia-dependent and glia-independent modes of migration, but the signaling pathways that control different migration modes and the transitions between them are poorly defined. Here, we sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 10 10  شماره 

صفحات  -

تاریخ انتشار 1998